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Abstract

China ’ s agrifood manufacturing sector produces millions of tons of organic and packaging
waste annually, creating an urgent need for circular production models. Resource re-extraction
(RE), the digital-enabled recovery of nutrients and materials from waste streams, offers a pathway
toward sustainable value creation. However, its adoption remains limited despite strong policy
incentives. Understanding why this resistance persists is critical for advancing the digital-
intelligent circular economy agenda. This study addresses that gap by examining how cognitive
barriers shape Resource Re-extraction Resistance (RRER), with a focus on identifying which
obstacles carry the most weight in an emerging economy context. Drawing on Innovation
Resistance Theory (IRT), we surveyed 256 agrifood manufacturers across multiple Chinese
provinces and applied partial least squares structural equation modelling (PLS-SEM) to test the
hypothesised barrier – resistance relationships. The model was evaluated using reliability,
convergent and discriminant validity, and collinearity diagnostics, ensuring robust measurement
quality. Structural analysis revealed that risk barriers exert the strongest influence on RRER,
followed by image barriers and usage barriers, while tradition and value barriers had no
significant effect. These results imply that resistance is driven more by concerns over operational
failure, brand reputation, and process complexity than by cultural attachment or perceived return
on investment. In response, we propose targeted digital-intelligent solutions such as AI-driven
process simulation to mitigate perceived risks, blockchain-enabled traceability to safeguard brand
image, and AR/VR-based training to lower complexity in implementation. By linking barrier
diagnosis with technology-enabled management strategies, this research advances theoretical
applications of IRT in industrial sustainability and provides actionable guidance for accelerating
the circular transition in emerging markets.

Keywords: Resource Re-extraction Resistance; Circular Economy; Digital Barriers; Agrifood
Manufacturing; Industry 4.0



Digital-Intelligent Economy and Scientific Management, 2025, 1(1), 39-62
https://doi.org/10.71204/2bzhn793

40

1. Introduction

China’s agrifood manufacturing sector is a formidable economic engine that also exerts
significant environmental pressure. In 2019, food-related production, processing, packaging, and
waste disposal collectively accounted for approximately 13.5% of China’s total greenhouse gas
emissions, reflecting the scale of the industry’s environmental impact (Sandalow et al., 2022) .
Although official national data on waste tonnage is limited, industry reports estimate that
hundreds of millions of tonnes of agricultural residues, livestock by-products, and packaging
waste are generated each year (China-Italy Chamber of Commerce, 2022) . When mismanaged,
these waste streams contribute significantly to environmental degradation by releasing
greenhouse gases, reducing soil fertility, and accelerating nutrient-driven eutrophication in
surface waters (Abate et al., 2024) . Nevertheless, research in Zhejiang’s Huangyan region
highlights the latent resource potential embedded in these waste streams—showing that
theoretical recovery of nitrogen and phosphorus from tangerine and water bamboo residues could
replace up to 59% of nitrogen and 15% of phosphorus fertilizer inputs, reinforcing resource re-
extraction’s promise for supply chain resilience and circular economy development (Santolin et
al., 2024).

Resource re-extraction (RE) describes the process of retrieving these secondary resources from
waste through specialized technological interventions. The integration of digital-intelligent
technologies such as IoT-enabled monitoring, AI-driven process optimization, and robotic
automation has further expanded the feasibility and efficiency of RE. Beyond improving recovery
rates, these technologies generate operational data that support better traceability, predictive
maintenance, and real-time quality assurance (Ellen MacArthur Foundation, 2021) . Recent
advancements in AI and digital twin technologies have further enhanced the capacity of agrifood
manufacturers to simulate operational changes, reduce perceived risks, and optimize resource
recovery processes (Ali et al., 2025; Meng & Li, 2025; R. Zhang et al., 2025).

In recognition of these opportunities, China has institutionalized RE within its broader circular
economy framework through pivotal legislation and planning initiatives. The Circular Economy
Promotion Law, enacted in 2009, explicitly mandates the reuse and comprehensive utilization of
agricultural and industrial by-products, and includes incentives such as fiscal and technological
support for recycling and waste recovery (Ministry of Ecology and Environment of the People’s
Republic of China [MEE], 2009) . More recently, the 14th Five-Year Plan for Circular Economy
Development (2021–2025), issued by the National Development and Reform Commission,
advances this agenda by emphasizing enhanced recycling of agricultural materials, the
construction of rural recycling infrastructure, and the expansion of biomass energy systems, with
financial incentives and infrastructure support for agrifood sustainability (China Briefing, 2021).

Despite these favorable policies, adoption of RE practices remains uneven across agrifood
manufacturers. Many firms perceive RE systems as financially risky, operationally disruptive, or
possibly detrimental to brand image, especially in settings where consumer trust in food safety is
paramount. This misalignment between policy intent and ground-level adoption underscores the
urgency of examining the cognitive and organizational barriers that obstruct RE uptake.
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The majority of existing research on RE adoption originates from developed economies with
mature regulatory environments and digital infrastructure (Geissdoerfer et al., 2017; Kirchherr et
al., 2018). In the Chinese context, leading studies on RE have typically concentrated on technical
performance indicators such as nutrient recovery efficiencies and economic feasibility through
cost-benefit analyses while largely overlooking the underlying behavioral and cognitive factors
that influence organizational adoption decisions (Li et al., 2021; Xia & Ruan, 2020). Furthermore,
while the literature on innovation resistance in manufacturing is well established, few studies
have explored how digital-intelligent technologies could strategically target and reduce these
barriers in a circular economy setting.

While China has made significant policy commitments to advancing a circular economy, the
agrifood manufacturing sector still faces mounting sustainability and security pressures. A
strategic 10-year initiative underscores the state’s commitment to food resilience, yet rising waste
volumes, nearly 27% lost across the supply chain, rivet this urgency (Dong et al., 2024; Reuters,
Apr 7 2025) . The agrifood system transformation itself introduces new stressors, such as
growing demand for feed and meat, greater reliance on imports, and the balancing act between
food production and environmental goals (Zhao et al., 2023) . Compounding these dynamics,
agriculture accounts for nearly 19% of China’s greenhouse gas emissions, intensifying the
challenge of safeguarding food security within climate-targeted transitions (China Daily, Jul 31
2025) . The persistence of adoption resistance amid these pressures not only slows progress
toward a digital-intelligent circular economy but directly threatens the long-term sustainability
and resilience of China’s food systems. Against this backdrop, this study advances both theory
and practice in three distinctive ways. Contextually speaking, It applies Innovation Resistance
Theory (IRT) (Ram & Sheth, 1989) to an emerging economy agrifood sector, a context
characterized by different institutional pressures, cultural norms, and digital maturity levels
compared to developed economies. Theoretically speaking, it integrates digital-intelligent solution
pathways such as AI-based risk modeling, blockchain-enabled traceability, and augmented reality
(AR) operational guidance directly into the conceptualization of barrier mitigation, bridging the
gap between resistance theory and Industry 4.0 applications. Empirically speaking, it employs
partial least squares structural equation modelling (PLS-SEM) analysis on a cross-regional sample
of 256 Chinese agrifood manufacturers, offering a robust empirical basis for ranking the influence
of different cognitive barriers on RE adoption resistance. By doing so, the research not only
clarifies the hierarchy of barriers in a real-world industrial context but also aligns these insights
with digital-intelligent management strategies that can accelerate circular economy transitions.

Overall, this study contributes to digital economy scholarship by showing how cognitive
resistance factors interact with digital-intelligent management interventions in shaping technology
adoption. It also informs policy design by identifying which barriers require targeted support
measures and which are less influential in the current Chinese agrifood manufacturing
environment. The study addresses the following research question: What cognitive barriers
significantly influence resource re-extraction resistance in China’s agrifood manufacturing sector,
and what digital-intelligent technologies can be leveraged to mitigate them?
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This question serves as the foundation for this study and outlines the following sections.
Section 2 discusses the theoretical framework and hypotheses, where we define each barrier,
derive our hypotheses, and link them to potential digital-intelligent management solutions.
Section 3 describes the methodology used in this study, followed by the results and analysis in
Section 4. Section 5 discusses the major findings and answers the research question. Section 5
concludes this study by showing its implications, contributions, limitations, and future research
suggestions.

2. Theoretical Framework and Hypotheses

Innovation adoption in industrial contexts rarely depends solely on technical feasibility or
policy alignment; rather, it is mediated by a range of organizational, cognitive, and cultural
factors that can significantly delay or derail implementation (Menichini et al., 2024; Sharma et al.,
2025) . For China’s agrifood manufacturers, the decision to integrate resource re-extraction (RE)
technologies must be evaluated not only in terms of cost-benefit outcomes but also through the
lens of perceived risks, operational compatibility, and stakeholder perception. Understanding
these resistance drivers is critical because they directly influence the pace and scale of circular
economy adoption, regardless of regulatory incentives.

To systematically capture and analyze these drivers, this study employs Innovation Resistance
Theory (IRT) as its conceptual foundation. IRT provides a structured way to categorize and
measure the distinct psychological and functional barriers that can hinder technology uptake
(Kaur et al., 2020) . In adapting IRT to the context of digital-intelligent RE, we not only identify
the barriers but also consider how emerging Industry 4.0 tools can actively counteract them. The
following subsections outline how IRT is applied in this research, define each barrier construct,
and develop hypotheses for empirical testing.

2.1. Innovation Resistance Theory in a Digital-Circular Economy Context

Innovation Resistance Theory (IRT), first articulated by Ram and Sheth (1989) , posits that
adoption of new technologies is not simply a function of perceived benefits but is often hindered
by various functional and psychological barriers. These barriers arise when the innovation
disrupts existing processes, challenges established norms, or introduces uncertainties that exceed
an adopter’s tolerance threshold.

In the context of digital-enabled resource re-extraction (RE), IRT offers a valuable analytical
lens for understanding why Chinese agrifood manufacturers, despite technical feasibility and
policy support, still resist adoption. The decision to adopt RE systems often requires altering
established workflows, reconfiguring supply chains, and committing financial resources to
unproven technology, all of which can trigger resistance (Aktas et al., 2021; Zhao et al., 2024a).

This study adapts IRT to the digital-circular economy by integrating Industry 4.0 tools like
digital twins, IoT, and blockchain as potential countermeasures to the barriers identified. In this
way, it helps to test IRT’s explanatory power in a novel agrifood manufacturing setting and
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demonstrate how specific technologies can address distinct resistance barriers (Zhao et al., 2024a;
Zhao et al., 2024b).

2.2. Conceptualizing Resource Re-extraction Resistance (RRER)

For this study, Resource Re-extraction Resistance (RRER) refers to the degree to which
agrifood manufacturers demonstrate reluctance, whether overt or implicit, toward adopting
technological solutions for recovering secondary materials from waste streams. RRER
encompasses unctional concerns, such as operational fit, cost-effectiveness, and supply chain
integration, and psychological factors, including brand image, consumer perception, and cultural
preferences (Heidenreich & Kraemer, 2016; Talwar et al., 2021).

In China’s agrifood manufacturing sector, these resistance dynamics are shaped by historical
risk aversion linked to food safety incidents, the complexity of production processes, and the
dominance of low-margin operational models that prioritize short-term cost control over long-
term sustainability investments (Bleischwitz et al., 2022; Farooque et al., 2019) . Even when RE
technologies are technically viable and supported by policy incentives, adoption may be
hampered if perceived risks outweigh anticipated returns (Laukkanen, 2016).

2.3. Defining and Linking the Barriers

Having established the conceptual definitions and interrelationships of the five barriers, it is
now essential to examine each in greater depth. This allows us to unpack the mechanisms through
which they may influence resistance to RE adoption in the agrifood manufacturing context. We
begin with the risk barrier, which, given the sector’s operational sensitivities and the preliminary
results of prior research, is expected to exert a particularly strong influence.

2.3.1. Risk Barrier (RB)

The risk barrier arises from the perception that an innovation could lead to financial losses,
operational inefficiencies, or reputational harm (Heidenreich & Kraemer, 2016) . In RE, these
risks may be heightened by uncertainties surrounding equipment reliability, regulatory
compliance, product quality, and market acceptance (Bleischwitz et al., 2022; Farooque et al.,
2019) . In China’s agrifood sector where past food safety incidents have intensified managerial
risk aversion (Despoudi et al., 2025; Reitano et al., 2024), perceived vulnerability to operational
failure or public backlash can deter adoption. As a potential mitigation strategy, AI-driven digital
twins can model RE processes under varying operational scenarios, enabling firms to forecast
performance outcomes and identify possible points of failure before physical implementation
(Ball & Badakhshan, 2022; Javaid et al., 2023). Hypothesis 1 is proposes as follows.

H1: The risk barrier has a positive and significant effect on RRER.

2.3.2. Image Barrier (IB)

The image barrier reflects the extent to which an innovation is seen as misaligned with a firm’s
desired brand image or public reputation (Rogers, 2003) . For agrifood manufacturers, adopting
RE might be misconstrued as an admission of excessive waste generation or potential
contamination risks, especially if stakeholders misunderstand the technology’s purpose
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(Despoudi et al., 2025) . In China’s consumer market where brand trust is fragile, these
perceptions can significantly shape managerial decisions. Digital solutions such as blockchain-
enabled traceability can counteract such concerns by providing verifiable proof of sustainable
practices, reframing RE adoption as a brand-enhancing innovation rather than a reputational
liability (Saberi et al., 2019). Hypothesis 2 is proposed as below.

H2: The image barrier has a positive and significant effect on RRER.

2.3.3. Usage Barrier (UB)

The usage barrier emerges when a new technology is perceived as complex, requiring
significant changes in routines or extensive training (Ram & Sheth, 1989) . For RE, these
challenges may involve integration with existing production lines, new waste segregation
protocols, and advanced data management systems (Chauhan et al., 2022; Vahdanjoo et al.,
2025) . Such perceptions can slow adoption, particularly in small and medium-sized enterprises
with limited technical capacity. Immersive training tools such as augmented reality (AR) and
virtual reality (VR) can reduce perceived complexity by enabling hands-on simulations that
simplify the learning process (Masood & Egger, 2019). Hypothesis 3 is proposed as below.

H3: The usage barrier has a positive and significant effect on RRER.

2.3.4. Tradition Barrier (TB)

The tradition barrier reflects resistance rooted in cultural norms, habitual practices, and
organizational inertia (Talwar et al., 2021). In the agrifood industry, some firms may prefer long-
standing waste disposal methods even when these are environmentally suboptimal due to
perceived reliability and familiarity (Okaibedi Eke et al., 2024). While China’s efficiency-driven
manufacturing culture may reduce the weight of tradition compared to other contexts, it can still
limit openness to process innovations. Digital tools such as gamified training and knowledge-
sharing platforms can gradually shift organizational norms, although the effect may be weaker
where performance metrics dominate decision-making. Hypothesis 4 is proposed accordingly.

H4: The tradition barrier has a positive and significant effect on RRER.

2.3.5. Value Barrier (VB)

The value barrier arises when the perceived return on investment (ROI) of an innovation is
insufficient to justify its adoption (Laukkanen, 2016) . For RE, this could involve doubts about
the market value of recovered materials, payback periods, or overall cost savings (Masi et al.,
2017) . In China’s agrifood sector where profit margins are often thin, such concerns may be
particularly influential. Predictive analytics can enhance perceived value by modeling long-term
cost savings, identifying secondary revenue streams, and quantifying the strategic benefits of
adopting RE technologies (Tseng et al., 2020). Hypothesis 5 is thereby proposed.

H5: The value barrier has a positive and significant effect on RRER.

2.4. Proposed Research Model

Figure 1 depicts the conceptual model tested in this study. Each barrier is hypothesized to
positively influence RRER, with the relative strength of these relationships revealing a barrier
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hierarchy. By examining these links, the study identifies where digital-intelligent interventions
can have the most impact, thereby operationalizing IRT within a digital-circular economy
framework.

Figure 1. Conceptual Framework

3. Methodology

Having established the theoretical underpinnings and hypotheses in Section 2, the next step is
to empirically test the proposed model using reliable contextually relevant data. The
methodological design is informed by the dual need to capture nuanced perceptions of cognitive
barriers among agrifood manufacturers and apply an analytical approach that can handle the
predictive and explanatory aims of the study.

3.1. Research Design

This research adopts a cross-sectional survey design, which is well suited to examining
perceptions and attitudes across a broad geographically dispersed sample (Creswell & Creswell,
2018) . While longitudinal designs can track changes over time, a cross-sectional approach
provides a robust snapshot of current resistance patterns, particularly valuable in a sector
undergoing active policy and technological change.

3.2. Sampling and Data Collection

The study targeted 256 agrifood manufacturing firms across seven major regions in China,
selected through stratified random sampling to ensure diversity in sub-sectors and firm sizes.
Provinces were chosen to capture regional variations in industrialization levels and policy
enforcement intensity. From June to October 2024, data were collected via structured
questionnaires distributed both electronically and in person, with follow-up calls to increase
response rates. Respondents were typically senior operations managers or sustainability officers,
as these roles hold decision-making authority over technology adoption. To minimize social
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desirability bias, the survey assured anonymity and emphasized that there were no “right” or
“wrong” answers.

3.3. Measurement Development

The constructs were operationalized using 5-point Likert scales (1 = strongly disagree, 5 =
strongly agree), adapted from established innovation resistance measures (Heidenreich &
Kraemer, 2016; Ram & Sheth, 1989) and tailored to the RE context. Each barrier construct, risk,
image, usage, tradition, and value, was measured using four to five items, while RRER was
measured using four items assessing reluctance to adopt RE technologies. Pilot test was
conducted with 19 industry practitioners and three academic experts in industrial management to
refine wording and ensure cultural and sectoral relevance. Minor adjustments were made to
clarify technical terms and align with Chinese manufacturing practices.

3.4. Data Analysis Method

Partial Least Squares Structural Equation Modeling (PLS-SEM) was selected for three reasons:

Prediction-oriented focus: The study aims to identify which barriers have the greatest
predictive power for RRER (Hair, 2019).
Model complexity: The framework includes multiple latent variables, each with reflective

measurement models, requiring an approach that can handle multicollinearity and smaller sample
sizes.
Adaptation of theory: As this is among the first applications of IRT in the digital-circular

economy context of China’s agrifood sector, PLS-SEM’s flexibility makes it suitable for theory
extension and model refinement.

Analysis was conducted using SmartPLS 4, which offers advanced bootstrapping and
predictive relevance testing capabilities.

3.5. Analytical Procedure

The analysis proceeded in three stages. The first stage is for the measurement model
assessment through testing for reliability (Cronbach’s α, composite reliability), convergent
validity (average variance extracted, AVE), and discriminant validity (Fornell–Larcker criterion).
The second stage is for the structural model assessment by estimating path coefficients,
significance levels (t-values, p-values), and effect sizes (f²). The third stage is for the predictive
relevance testing by using Q² statistics from blindfolding procedures to determine the model’s
predictive validity. The methodological rigor outlined here ensures that the empirical findings are
statistically robust and contextually grounded. With the data collection and analytical procedures
firmly established, the next section presents the results accordingly.

4. Results

Following the procedures outlined in Section 3, the results are presented in three major parts: (1)
demographic and descriptive analyses; (2) measurement model validation, ensuring that the
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constructs meet the reliability and validity requirements; and (3) structural model assessment,
testing the hypothesized relationships and evaluating the predictive strength of the model.

4.1. Demographic Analysis

The demographic profile of surveyed firms provides further context to the resistance patterns
(see Figure 2). The largest proportion of respondents came from fruit and vegetable processing
companies (18.8%), followed by jam, jelly, and preserve manufacturers (14.1%) and frozen food
manufacturers (13.3%). This distribution reflects the strong representation of firms engaged in the
processing and preservation of perishable commodities, a sub-sector where waste generation is a
notable challenge due to product shelf-life constraints. In addition, a considerable share of
participants were organic and natural food brands (11.7%) and juice and beverage manufacturers
(10.9%), both of which operate in high-volume production environments where process
innovation could substantially impact waste management and RE adoption.

Figure 2. Distribution of Firm Profile

In terms of business maturity, nearly half of the firms had been established for 6 to10 years
(44.1%), and a further 41.8% had been operating for less than 5 years. Only 10.9% had been in
business for 11 to 20 years, and less than 3% had operated for more than two decades. This
relatively young age profile suggests that the sample is dominated by firms still in their growth or
consolidation phases, where investment priorities may be shaped by rapid market adaptation
rather than long-term tradition.
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Firm size also varied considerably. The most common category was 51–100 employees
(36.7%), followed by 101–500 employees (25.0%) and less than 50 employees (22.7%). Larger
firms employing over 500 workers accounted for 15.6% of the sample, indicating a mixture of
small-to-medium-sized enterprises (SMEs) and larger industrial players. This diversity is
important because firm size often influences the resources available for technological adoption
and risk mitigation strategies.

In terms of financial capacity, 40.2% reported annual revenues below RMB 30 million, while
32.4% fell into the RMB 30–50 million range. Approximately one-fifth (20.3%) generated
between RMB 50–100 million, and only 7% exceeded RMB 100 million in revenue. The
predominance of lower-revenue firms suggests that capital constraints could shape perceptions of
financial risk associated with RE investments, particularly in digital-intelligent solutions.

Ownership structures were dominated by private enterprises (70.3%), with smaller proportions
of state-owned enterprises (10.2%), shareholding companies (9.8%), and foreign-invested firms
(9.4%). The dominance of privately-owned companies may indicate a higher sensitivity to cost-
benefit considerations and market image.

Geographically, the majority of firms were located in East China (34.4%), reflecting the
region’s industrial concentration and export-oriented agrifood processing capacity. Other notable
clusters were in South China (18.0%) and Central China (17.2%), while the remaining regions
had smaller shares, with Northwest China representing just 2.7% of respondents. This regional
distribution highlights that the study’s results are most representative of industrially developed
areas, though inputs from less developed regions add diversity to the dataset.

Finally, the analysis of monthly food waste generation revealed that most firms produced 6–10
tons per month (42.6%), followed by those generating less than 5 tons (31.3%). A smaller share
reported waste levels of 11–20 tons (17.2%) or more than 20 tons (less than 10% combined). This
waste volume distribution aligns with the industrial scale of respondents and underscores the
sector’s potential for resource recovery if technological and cognitive barriers can be addressed.

Taken together, this demographic profile indicates a sample characterized by sectoral diversity,
relatively young firms, predominance of SMEs, and a strong private ownership base. These
characteristics have direct implications for understanding the cognitive barriers to RE adoption:
younger, smaller, and privately-owned firms may exhibit higher sensitivity to risk and operational
complexity, whereas larger or more established entities may have greater absorptive capacity for
innovative digital-intelligent solutions.

4.2. Descriptive Analysis

Table 1 presents the descriptive statistics for the five barrier constructs. Mean scores indicate
moderately high perceptions across all barriers, with usage (M = 3.77) ranked highest, followed
by value (M = 3.66), image (M = 3.53), risk (M = 3.48), and tradition (M = 3.41). While these
descriptive results highlight which barriers are perceived as most salient, their true influence on
RRER requires testing through structural modelling, which is presented in the subsequent sections.
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Table 1. Descriptive Analysis of Barrier Constructs

Construct Mean SD Interpretation

Risk Barrier (RB) 3.48 1.101 High perceived uncertainty in financial/operational
outcomes

Image Barrier (IB) 3.53 1.023 High concern over brand and market perception

Usage Barrier (UB) 3.77 0.887 Operational complexity and training burden highly
significant

Value Barrier (VB) 3.66 0.935 High skepticism on ROI

Tradition Barrier (TB) 3.41 1.08 High attachment to legacy production habits

4.3. Measurement Model Validation

Table 2 reports the reliability and validity statistics for all constructs. Internal consistency was
confirmed, with Cronbach’s α values exceeding the 0.70 benchmark (Hair et al., 2010; Nunnally
& Bernstein, 1995) for all constructs. Composite reliability (CR) scores were also above the 0.70
threshold, indicating that each construct’s items consistently reflect their underlying latent
variable. Convergent validity was supported, as the Average Variance Extracted (AVE) for all
constructs exceeded 0.50 (Fornell & Larcker, 1981), confirming that the majority of variance in
the indicators was explained by the respective constructs. Collinearity diagnostics revealed
Variance Inflation Factor (VIF) values well below the critical value of 5 (Hair et al., 2019), with
the exception of two items in the Usage Barrier construct (UB3 and UB5), which approached
cautionary levels (4.237 and 4.136, respectively). Although these values remain within acceptable
limits, they suggest a degree of redundancy between items. Retaining them is justified on
theoretical grounds to preserve construct validity; however, this issue is acknowledged as a
limitation. Future studies may refine these measures, consider formative approaches, or test item
reduction strategies to minimize multicollinearity risk while maintaining robust construct
representation.

Table 2. Measurement model evaluation

Construct Items Loadings Cronbach’s α CR AVE VIF range

RRER 4 0.709–0.799 0.746 0.84 0.567 1.237–1.621

Risk Barrier (RB) 4 0.723–0.779 0.746 0.839 0.566 1.428–1.627

Image Barrier (IB) 5 0.789–0.874 0.897 0.924 0.709 2.059–3.794

Usage Barrier (UB) 4 0.692–0.840 0.794 0.866 0.62 1.413–4.237

Value Barrier (VB) 4 0.775–0.819 0.818 0.878 0.643 1.510–3.643

Tradition Barrier (TB) 4 0.818–0.897 0.865 0.908 0.712 1.745–2.837
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The Fornell–Larcker criterion confirmed discriminant validity: the square root of each
construct’s AVE was greater than its correlations with other constructs. This suggests that the
measures are empirically distinct and that multicollinearity is not a critical issue in the model.

4.4. Structural Model Results

Table 3 presents the structural path coefficients, t-values, p-values, effect sizes (f²), and
predictive relevance (Q²). Hypotheses H1, H2, and H3 were supported, while H4 and H5 were not.

The Risk Barrier (H1) emerged as the strongest predictor of RRER (β = 0.546, p < 0.001), with
a large effect size (f² = 0.280). This finding reflects the central role of operational uncertainty in
agrifood manufacturing, a sector characterized by perishable raw materials, thin margins, and
tight regulatory oversight. Even small disruptions in processing can lead to significant financial
losses, product recalls, or export rejections. RE technologies, while promising, are still perceived
as untested at scale, which amplifies managerial caution. This aligns with prior research
suggesting that firms in food-related industries are disproportionately risk-averse when innovation
introduces potential quality or safety variability (Shakuri & Barzinpour, 2024).

The Image Barrier (H2) also showed a significant positive effect (β = 0.217, p = 0.009),
underscoring the reputational sensitivity of agrifood firms. Brand trust in China is fragile due to
recurring food safety scandals, and consumers often equate product safety with purity and
minimal interference (Tao & Chao, 2024). In this environment, reusing or reprocessing materials
can easily be misconstrued as compromising quality. With digital media amplifying reputational
risks, firms perceive RE as a potential liability unless supported by strong traceability and
certification mechanisms. This helps explain why image considerations, even more than
operational cost concerns, act as a major deterrent to adoption.

The Usage Barrier (H3) exerted a smaller but still significant influence (β = 0.140, p = 0.027).
While not as dominant as risk or image, this barrier remains relevant due to the inherent
complexity of perishable food operations. The review from Osman et al. (2023) of perishable
food supply chain challenges illustrates how logistical and process barriers persist in this sector,
supporting the significance of perceived usage complexity in RE adoption. It reflects the technical
complexity of integrating RE systems into existing production lines, especially for small and
medium-sized enterprises (SMEs) that dominate China’s agrifood sector. Many SMEs lack
advanced digital infrastructure or sufficient skilled labor to manage RE operations, making
adoption appear resource-intensive and disruptive. Although digital literacy is increasing, the
perceived effort of retraining workers and reconfiguring production processes continues to
generate hesitation.

By contrast, the Tradition Barrier (H4) and Value Barrier (H5) did not significantly predict
RRER. This divergence from findings in other cultural settings suggests that industrial
modernization and strong state-led incentives in China reduce the influence of cultural inertia and
short-term ROI skepticism. Firms increasingly prioritize efficiency and regulatory compliance
over preserving traditional waste management practices. Moreover, subsidies and circular
economy programs already improve the financial attractiveness of RE, diminishing value-related
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concerns. This resonates with arguments from institutional theory that coercive pressures from
state policy can override traditional practices, while supportive incentives mitigate cost-related
hesitation (Castro-Lopez et al., 2023; Juráček et al., 2025).

Table 3. Structural model evaluation

Hypothesis Path β (O) t-value p-value f² Status

H1 RB → RRER 0.546 6.507 0 0.28 Supported

H2 IB → RRER 0.217 2.632 0.009 0.041 Supported

H3 UB → RRER 0.14 2.215 0.027 0.027 Supported

H4 TB → RRER -0.069 0.916 0.359 0.004 Rejected

H5 VB → RRER 0.073 1.108 0.268 0.006 Rejected

Model fit R² = 0.640 Q² = 0.615

The model explains 64.0% of the variance in RRER, indicating substantial predictive power
(Chin, 1998). The dominance of the risk barrier reflects firms’ concerns over operational stability
in perishable food production, where system failures can cause disproportionate losses. Image
barriers highlight the sector’s reputational sensitivity, particularly in consumer-facing subsectors
such as organic, beverage, and specialty foods. Usage barriers, though weaker, remain significant
due to the technical integration and training demands of RE adoption, especially for SMEs with
limited digital infrastructure. By contrast, tradition and value barriers did not significantly
influence resistance, suggesting that regulatory incentives and modernization pressures may
already be mitigating cultural inertia and ROI skepticism. The Q² value of 0.615 confirms that the
model has predictive relevance, indicating that it can forecast resistance patterns beyond the
sample data. These findings provide the empirical foundation for the discussion that follows,
where digital-intelligent strategies are mapped onto the most pressing barriers.

5. Discussion

This study examined the cognitive barriers influencing RRER in China’s agrifood
manufacturing sector. While the empirical results in Section 4.4 establish the hierarchy of barriers,
this section explicitly links these findings to digital-intelligent solutions, demonstrating how tools
such as AI-driven simulations, blockchain-enabled traceability, and AR/VR training can directly
address the most influential resistance factors. The hierarchy of barriers reflects the sector’s
operational realities. Unlike many studies in developed contexts where tradition and value
perceptions are prominent drivers of resistance (Ram & Sheth, 1989; Talwar et al., 2021), the
Chinese agrifood industry appears to be pragmatically oriented. Here, firms are not bound by
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entrenched customs or skeptical about the intrinsic value of innovation; rather, they are
constrained by the perceived dangers, reputational vulnerabilities, and practical difficulties of
implementing RE technologies.

The findings of this study demonstrate that operational risk, image, and usage barriers
significantly contribute to RRER in China’s agrifood manufacturing sector, whereas tradition and
value barriers do not exert a measurable influence. This ordering contrasts with studies in Western
contexts, where tradition and value often feature prominently in explaining resistance to circular
innovations (Talwar et al., 2021). The divergence highlights the context-specific nature of
innovation resistance theory, underscoring the need to account for industrial priorities, regulatory
pressures, and market structures.

The risk barrier demonstrated the strongest influence on RRER, confirming previous research
that firms in resource-intensive sectors often perceive technological change as financially
hazardous when future payoffs are uncertain (Ram & Sheth, 1989; Talwar et al., 2021). The
demographic analysis offers important explanatory insight. More than 85% of participating firms
were established within the last decade, and over 62% reported annual revenues below RMB 50
million. Such firms typically have tighter cash flows, less financial buffering capacity, and shorter
investment horizons, making them more risk-averse in allocating resources to untested processes
like resource re-extraction. The concentration of small and medium-sized enterprises (SMEs)
further compounds this effect, as SMEs in China often rely heavily on short-term profitability to
maintain competitiveness (An & Zhang, 2021) . These operational uncertainties are further
magnified in contexts where digital infrastructure adoption is still maturing, as shown by recent
findings on the digital–green coupling transition in Chinese agriculture, which highlight persistent
gaps in technological integration and risk management (Hu et al., 2025). Thus, the dominance of
the risk barrier in our model is not only statistically significant but also logically consistent with
the financial and structural realities of the sampled firms.

The image barrier ranked second, aligning with prior studies that highlight reputational
concerns as a core impediment to adopting green innovations in consumer-facing industries
(Kumar & Nayak, 2022) . This finding is reinforced by our demographic data. A large share of
respondents operate in sectors such as fruit and vegetable processing, beverage manufacturing,
and organic/natural products, where brand identity and consumer trust are critical assets. In such
markets, perceived risks of product contamination, inconsistency in quality, or misalignment with
brand values can outweigh the potential sustainability gains from RE. Moreover, for firms
exporting to global markets, where sustainability narratives are often closely scrutinized, the fear
of unintended reputational harm may act as a powerful deterrent to early adoption. Integrating
blockchain-enabled traceability (Apeh & Nwulu, 2025) within RE systems has been shown to
alleviate such concerns by offering verifiable proof of product integrity, a finding supported by
recent reviews on sustainable circular agri-food supply chains (Zhao et al., 2025).

The usage barrier also emerged as a significant, though less dominant, factor. While
technological solutions for RE are increasingly available, their integration into existing workflows
remains challenging for firms with limited digital infrastructure or operational expertise (Muller
et al., 2024; Raj et al., 2020). The demographic results show that over 70% of surveyed firms are
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located in East, South, and Central China, regions with stronger industrial infrastructure, but these
advantages may be offset by the fact that more than one-third of firms employ fewer than 50 staff,
limiting in-house capacity for technological onboarding. Additionally, high reported monthly
food waste volumes among many respondents indicate that while potential input material for RE
exists, process redesign and workforce training requirements may appear daunting, further
reinforcing the perception of complexity.

The non-significant influence of tradition and value barriers offers an intriguing contrast to
some innovation adoption studies in other cultural contexts (e.g., Talke & Heidenreich, 2014 ).
This divergence can be interpreted through complementary theoretical lenses. From the
perspective of Institutional Theory, firms in China’s agrifood sector face strong coercive and
mimetic pressures from government regulations and industry benchmarks that prioritize
modernization and sustainability (Juráček et al., 2025) . Such institutional forces can weaken the
relevance of tradition, as firms adapt not primarily out of cultural preference but in response to
regulatory compliance and competitive imitation. Similarly, insights from the Resource-Based
View (RBV) help explain why value barriers did not significantly influence resistance. Policy
instruments such as subsidies, tax incentives, and national standards effectively reduce the
financial burden of adoption, allowing firms to perceive RE technologies less as risky investments
and more as strategic resources that enhance competitiveness (Awad et al., 2025) . Together,
these complementary lenses highlight that institutional and resource configurations in China’s
agrifood industry mediate the salience of traditional and value-related concerns.

When viewed through the lens of Innovation Resistance Theory, these results extend the
understanding of how barrier salience may shift in emerging market contexts. Whereas much of
the IRT literature highlights tradition and value barriers as prominent obstacles, our findings
suggest that in dynamic, policy-supported sectors like China’s agrifood manufacturing, these
barriers are overshadowed by risk, image, and usage considerations. This aligns with emerging
evidence from sustainability adoption studies in Asia, where operational uncertainty and market
perception increasingly determine the pace of technological uptake (Rizos et al., 2016).

By incorporating demographic evidence, this study adds nuance to existing frameworks,
showing that barrier intensity is not uniform but shaped by firm age, size, market positioning, and
product category. For instance, younger SMEs in consumer-oriented industries are
disproportionately sensitive to financial and reputational uncertainties, which explains why
technological complexity and brand image concerns remain highly salient even in regions with
strong digital infrastructure.

Collectively, these findings suggest that strategies to promote RE adoption in China should not
rely solely on financial incentives or appeals to cultural change. Instead, interventions must
directly reduce perceived risk, safeguard brand image, and streamline operational integration,
priorities that are consistent with the technological potential of Industry 4.0 solutions. However, it
is important to recognize that the sample in this study is skewed toward firms in more
industrialized regions, particularly East China, which accounted for over one-third of respondents.
This regional concentration means that the findings are most representative of areas with
advanced infrastructure and stronger policy enforcement, and they may not fully capture the



Digital-Intelligent Economy and Scientific Management, 2025, 1(1), 39-62
https://doi.org/10.71204/2bzhn793

54

barriers faced by firms in less developed regions such as Northwest China. Future research should
therefore adopt a more balanced regional sampling strategy to improve generalizability and to
reveal whether the observed barrier hierarchy is consistent across different institutional and
economic settings.

Overall, these findings reaffirm the relevance of the innovation resistance framework while
signalling the need for sector-specific recalibration. In China’s agrifood manufacturing sector, the
weight of operational and reputational considerations surpasses both cultural and short-term
economic concerns, providing clear strategic priorities for policymakers, technology providers,
and industry leaders seeking to advance the circular economy agenda.

6. Implications

The findings of this study carry several actionable implications for theory, practice, and policy.

6.1. Theoretical Implications

By extending Innovation Resistance Theory to the context of digital-enabled circular food
systems, this study highlights the context-dependent salience of barriers, showing that operational
risk, image, and usage outweigh tradition and value in China’s agrifood sector. Future research
should further integrate complementary theories such as Institutional Theory and the Resource-
Based View.

6.2. Managerial Implications

For agrifood manufacturing managers, these findings signal the need to prioritize risk
mitigation over tradition-challenging initiatives. Operational risk emerged as the strongest
deterrent, suggesting that investments in predictive digital tools such as AI-powered process
simulations should precede large-scale RE rollout. By providing empirical evidence of system
reliability under various scenarios, these tools can address managers’ loss-aversion tendencies and
operational hesitations (Vecchio et al., 2021).

Second, the prominence of image concerns calls for proactive brand management strategies.
Blockchain-enabled traceability platforms can provide transparent proof of quality and safety,
ensuring that sustainability claims are credible and verifiable. This transparency is particularly
crucial for export-oriented firms that face stricter international scrutiny on food safety standards
(FAO, 2021).

Third, the complexity barrier underscores the necessity of human capital development
alongside technological adoption. AR/VR-based training programs can accelerate skill acquisition
while minimizing production disruptions. By embedding these training tools into daily workflows,
firms can reduce the perceived operational burden of RE adoption.

6.3. Policy Implications

From a policy perspective, these results suggest that generic sustainability subsidies may not be
sufficient to overcome the most influential barriers. Instead, targeted policy instruments that
build on China’s existing frameworks are needed. For instance, government-backed
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demonstration projects using AI-driven simulations, such as the MARA-sponsored “Fuxi Farms”
under the 2024–2028 Smart Agriculture Action Plan (Ministry of Agriculture and Rural Affairs
of the People’s Republic of China, 2024) could be aligned with the Digital China initiative.
These farms exemplify how AI-enabled “digital brain” systems, sensor networks, and real-time
data platforms foster transparency and operational confidence (People’s Daily Online, 2025) ,
supporting the broader digital and circular transition. Similarly, a national digital traceability
standard for reextracted resources could be developed under the “Zero-Waste City” pilot
programs (Chai et al., 2025) , ensuring consistent quality assurance and transparency across
regions while aligning with China’s export competitiveness goals (OECD, 2023) . Moreover,
skills development policies could be explicitly tied to the “Double Carbon” objectives by
supporting digital upskilling programs for agrifood workers (Zhang et al., 2023) , co-funded
through public–private partnerships. Linking these targeted measures with existing national
strategies ensures coherence, accelerates implementation, and embeds RE adoption within
China’s broader sustainability agenda (Ghisellini et al., 2016).

6.4. Research Limitations and Future Research Suggestions

While this study makes both theoretical and practical contributions, several limitations warrant
consideration. First, the empirical analysis relies on cross-sectional survey data, which captures
perceptions and behaviours at a single point in time. This limits our ability to observe how
resistance to RRER evolves as firms gain more exposure to digital-intelligent solutions or as
regulatory environments shift. Future research should adopt longitudinal designs to track barrier
dynamics over time, enabling more robust causal inferences.

Second, the sample is geographically confined to Chinese agrifood manufacturers, a sector
characterised by distinct operational, cultural, and regulatory contexts. While this focus enhances
internal validity, it constrains the generalisability of findings to other industries or economies.
Comparative studies across emerging and developed markets, particularly in the ASEAN and EU
contexts, could reveal whether the barrier hierarchy observed here is universal or context-specific.

Third, the study’s operationalisation of barriers follows IRT constructs adapted from prior
literature. Although these constructs demonstrated strong measurement validity, they may not
fully capture sector-specific nuances such as supply chain traceability requirements or the
perishability of input materials. Incorporating qualitative approaches such as in-depth interviews
or ethnographic fieldwork could enrich our understanding of the micro-level mechanisms
underlying resistance.

Finally, the digital-intelligent solutions proposed in this study remain conceptual. While
grounded in technological feasibility and aligned with Industry 4.0 developments, their
effectiveness in practice has not yet been empirically tested. Future studies should examine the
scalability of integrated AI–digital twin frameworks, as they have shown promising results in
improving both operational efficiency and environmental outcomes in China’s agrifood
manufacturing (Ali et al., 2025; Andika et al., 2025; Hu et al., 2025; Meng & Li, 2025; R. Zhang
et al., 2025).
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By addressing these limitations, future scholarship can build a more comprehensive, context-
sensitive, and empirically validated framework for overcoming resistance in circular economy
transitions.

6.5. Conclusion

This study set out to investigate the cognitive barriers that significantly influence RRER in
China’s agrifood manufacturing sector and to propose digital-intelligent strategies capable of
overcoming these barriers. Drawing on IRT and employing PLS-SEM, we provided empirical
evidence that risk, image, and usage barriers are the primary determinants of RRER, whereas
tradition and value barriers have little to no significant impact in this context. The dominance of
risk concerns underscores the sector’s sensitivity to operational uncertainty, while the significance
of image and usage barriers reflects the reputational and procedural challenges manufacturers
perceive in adopting RE practices.

By integrating these findings with the technological capabilities of Industry 4.0, we have
outlined targeted solutions, AI-driven risk simulations, blockchain-enabled traceability, and
AR/VR-based training, that directly address the most influential barriers. This linkage between
barrier diagnosis and tailored technological intervention advances the application of IRT in the
digital-circular economy domain, offering a model that is both theoretically grounded and
practically actionable.

The implications extend beyond the Chinese context, suggesting that in other emerging
economies, effective RE adoption strategies should prioritise the mitigation of uncertainty and
complexity rather than solely focusing on altering cultural traditions or demonstrating economic
returns. Policymakers, industry leaders, and researchers can draw from this framework to design
integrated management strategies that align digital transformation with circular economy
objectives.

In closing, the study not only answers its initial research question but also contributes to a
broader understanding of how cognitive barriers interact with technological enablers in shaping
industrial sustainability transitions. By doing so, it lays a foundation for academic inquiry and
policy innovation aimed at accelerating the adoption of resource re-extraction in global
manufacturing systems.
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